Search Resources

291 Results

View
Selected filters:
  • Biology
Advanced Animal Behavior, Spring 2000
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

Reviews selected issues including learning, cognition, perception, foraging and feeding, migration and navigation, defense, and social activities including conflict, collaboration, courtship and reproduction, and communication. The interacting contributions of environment and heredity are examined and the approaches of psychology, ethology, and ecology to this area of study are treated. The relation of human behavior patterns to those of nonhuman animals is explored. Additional readings and a paper are required for graduate credit.

Subject:
Biology
Psychology
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Schneider, Gerald
Date Added:
01/01/2000
Affect: Biological, Psychological, and Social Aspects of Feelings, Spring 2013
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

This course studies the relations of affect to cognition and behavior, feeling to thinking and acting, and values to beliefs and practices. These connections will be considered at the psychological level of organization and in terms of their neurobiological and sociocultural counterparts.

Subject:
Biology
Psychology
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Chorover, Stephan
Date Added:
01/01/2009
Air Pollution [Liberal Arts: Math and Science/Natural Science]
Unrestricted Use
CC BY
Rating

This assignment was designed for students in the pathways introductory chemistry class and the first year seminar and aligns with the Inquiry and Problem Solving core competency. In this context, there is a focus on framing the issues (identifies and/or addresses questions and problems), evidence gathering (assembles, reviews and synthesizes evidence from several diverse sources), evidence (analyze the data to address the questions posed) and conclusions (critical thinking, reflect on the outcomes, draw conclusions and generate new knowledge). There is also a Global Learning component based on comparing data collected locally with corresponding data from other locations or countries. The assignment includes the written communication ability with a focus on "Content Development and Organization," as well as the clarity of the communication and its purpose. The overall aim of this assignment is to enhance students' conceptual learning and understanding of key issues related to society as well as their course. This assignment was developed as part of a LaGuardia Global Learning mini-grant and CUNY Experiential Learning and Research in the Classroom mini-grants.
The assignment will be scaffolded over about 3 weeks and is worth about 10% of the final grade.
To further increase the success of this assignment, instructors might want to consider the following: Use class discussions to focus on the relevance and importance of conceptual learning. In order to improve the data analysis aspect, incorporating class demonstrations of how to conduct the analysis and guide discussions about what the data means. Giving students more detailed rubrics with formal expectations of the requirements of the assignments, particularly in the written format Find ways to increase student participation in class discussions.
When this assignment has been utilized in previous semesters, students clearly displayed the capability to relate the co-curricular experiences in the data collection and its analysis to concepts and ideas covered during class. Evidence for this came from very dynamic and interactive class discussions based on air pollution as well as from the output of the written assignment, in which students were able to relate the nature, sources and chemical properties of the pollutants to their impact on the environment, health and society in general.
LaGuardia's Core Competencies and Communication Abilities
List the Program Goal(s) that this assignment targets
Global Learning based on comparing pollutant levels around the LaGuardia campus with those in other locations or countries. It is also an IPS assignment, incorporating scientific literacy and thinking, as students need to analyze the data, interpret it and reflect on the outcomes.
List the Student Learning Objective(s) that this assignment targets
Identify and apply fundamental chemical concepts and methods. Gather, analyze, and interpret data.
List the Course Objectives(s) that this assignment targets
Explore the complex connections between chemistry and society. Apply chemical principles to real world issues, including ethical aspects. Gather, analyze, and interpret data.
Write a short description of the pedagogy involved in executing this assignment
Students collect and analyze the data, interpret the results in terms of pollution levels, safety and ethics and compare with EPA standard levels and with levels in other countries.
Outside the classroom events will be organized for data collection. There will be class and group-based discussions focused on the data, its analysis and the connections to society.

Subject:
Environmental Science
Biology
Statistics and Probability
Chemistry
Physical Geography
Material Type:
Homework/Assignment
Provider:
CUNY Academic Works
Provider Set:
LaGuardia Community College
Author:
Alberts, Ian
Date Added:
10/01/2018
Analysis of Biological Networks (BE.440), Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

This class analyzes complex biological processes from the molecular, cellular, extracellular, and organ levels of hierarchy. Emphasis is placed on the basic biochemical and biophysical principles that govern these processes. Examples of processes to be studied include chemotaxis, the fixation of nitrogen into organic biological molecules, growth factor and hormone mediated signaling cascades, and signaling cascades leading to cell death in response to DNA damage. In each case, the availability of a resource, or the presence of a stimulus, results in some biochemical pathways being turned on while others are turned off. The course examines the dynamic aspects of these processes and details how biochemical mechanistic themes impinge on molecular/cellular/tissue/organ-level functions. Chemical and quantitative views of the interplay of multiple pathways as biological networks are emphasized. Student work will culminate in the preparation of a unique grant application in an area of biological networks.

Subject:
Biology
Chemistry
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Essigmann, John
Sasisekharan, Ram
Date Added:
01/01/2004
Anatomy and Human Physiology Lab II
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

This course is a continuation of Anatomy and Physiology I. It covers the study of the structure and function of the cardiovascular, respiratory, urinary, digestive and endocrine system, as well as development, metabolism, electrolytes and acid base balance.

Subject:
Anatomy/Physiology
Biology
Material Type:
Activity/Lab
Full Course
Provider:
CUNY
Provider Set:
New York City College of Technology
Author:
Ralph Alcendor
Date Added:
12/10/2018
Anatomy and Physiology I Lecture
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

This course is the first part of the two semester course of Anatomy and Physiology. It integrates the anatomy and physiology of cells, tissues, organs and human body systems, It includes the study of the gross and microscopic structure of the systems of the human body with special emphasis on the relationship between structure and function. It is based on OpenStax Anatomy and Physiology book and is supplemented by content from the Open Learning Initiative (Carnegie Mellon University Open Learning Initative) and Boundless Physiology Open Book.

Subject:
Anatomy/Physiology
Biology
Material Type:
Full Course
Provider:
CUNY
Provider Set:
New York City College of Technology
Author:
Judyta Juranek
Date Added:
10/18/2019
Animal Behavior, Fall 2013
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

Most of the major categories of adaptive behavior can be seen in all animals. This course begins with the evolution of behavior, the driver of nervous system evolution, reviewed using concepts developed in ethology, sociobiology, other comparative studies, and in studies of brain evolution. The roles of various types of plasticity are considered, as well as foraging and feeding, defensive and aggressive behavior, courtship and reproduction, migration and navigation, social activities and communication, with contributions of inherited patterns and cognitive abilities. Both field and laboratory based studies are reviewed; and finally, human behavior is considered within the context of primate studies.

Subject:
Biology
Ecology
Psychology
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Schneider, Gerald
Date Added:
01/01/2013
Antibiotics, Toxins, and Protein Engineering, Spring 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

The lethal poison Ricin (best known as a weapon of bioterrorism), Diphtheria toxin (the causative agent of a highly contagious bacterial disease), and the widely used antibiotic tetracycline have one thing in common: They specifically target the cell's translational apparatus and disrupt protein synthesis. In this course, we will explore the mechanisms of action of toxins and antibiotics, their roles in everyday medicine, and the emergence and spread of drug resistance. We will also discuss the identification of new drug targets and how we can manipulate the protein synthesis machinery to provide powerful tools for protein engineering and potential new treatments for patients with devastating diseases, such as cystic fibrosis and muscular dystrophy. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.

Subject:
Biology
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Sassanfar, Mandana
Date Added:
01/01/2007
Artistic Expression of Original Research Course Curriculum
Unrestricted Use
CC BY
Rating

Grade level: graduate students, advanced undergrads, persons with analyzed research results

Course length: 1 semester, 4-6 months

Objective: This course empowers scientists to engage with their own data, each other, and the public through art. Through collective brainstorming, prototyping, and feedback from professional artists, students will create a project that expresses their own research through any artistic medium of their choice. The course typically culminates in a public art exhibition where students interact with a general audience to discuss their research, art, and what it means to be a scientist.

Subject:
Visual Arts
Graphic Design
Life Science
Biology
Physical Science
Social Science
Material Type:
Full Course
Provider:
Arizona State University
Author:
Peter Marting
Date Added:
03/04/2019
Avoiding Genomic Instability: DNA Replication, the Cell Cycle, and Cancer, Fall 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

In this class we will learn about how the process of DNA replication is regulated throughout the cell cycle and what happens when DNA replication goes awry. How does the cell know when and where to begin replicating its DNA? How does a cell prevent its DNA from being replicated more than once? How does damaged DNA cause the cell to arrest DNA replication until that damage has been repaired? And how is the duplication of the genome coordinated with other essential processes? We will examine both classical and current papers from the scientific literature to provide answers to these questions and to gain insights into how biologists have approached such problems. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.

Subject:
Biology
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Randell, John
Date Added:
01/01/2006
BIO 013: Writing in the Sciences - Evolutionary Themes, syllabus
Read the Fine Print
Rating

The Syllabus for Bio. 013, Writing in the Sciences - Evolutionary Themes, is a College Writing 2 course that develops student skill in science writing for different audiences: Scientists writing for themselves (the Field journal); Scientists writing for other scientists (the Review article); and Scientists writing for students/ society ( an Essay for a periodical that utilizes analogy/metaphor). To inform this writing, students read and discuss Darwin's original works and the writings of more contemporary evolutionary theorists, including E. Mayr and S.J. Gould. This course is appropriate for incoming students as well as more advanced biology students.

Subject:
Arts and Humanities
Life Science
Biology
Material Type:
Syllabus
Provider:
CUNY Academic Works
Provider Set:
Queens College
Author:
Muehlbauer, Esther
Date Added:
06/14/2021
BIO 3004 Videos Research Experiences in Microbiomes Network (REMNet)
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

Welcome to the Research Experiences in Microbiomes Network (REMNet) videos for Biology 3004. Here you will learn how you can incorporate next-generation microbiome sequencing into your biology course curriculum.

Subject:
Biology
Material Type:
Lecture Notes
Lesson
Student Guide
Teaching/Learning Strategy
Tutorial
Provider:
CUNY
Provider Set:
Brooklyn College
Author:
Amy Wolfe
REMNet (Research Experiences in Microbiomes Network)
Date Added:
03/09/2020
Bench to Bedside: Molecularly Targeted Therapies in Blood Disorders and Malignancy, Fall 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

" Where do new drugs and treatments come from? This class will take you from the test tubes and mice of the laboratory to the treatment of patients with deadly blood disorders. Students will learn how to think as a scientist through discussion of primary research papers describing the discoveries of several novel treatments. Topics such as gene therapy, the potential of drugs based on RNA interference and the reprogramming of somatic cells into stem cells for regenerative medicine will be discussed. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching."

Subject:
Biology
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Flygare, Johan
Wong, Bill
Date Added:
01/01/2009
Biochemical Engineering, Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

This course focuses on the interaction of chemical engineering, biochemistry, and microbiology. Mathematical representations of microbial systems are featured among lecture topics. Kinetics of growth, death, and metabolism are also covered. Continuous fermentation, agitation, mass transfer, and scale-up in fermentation systems, and enzyme technology round out the subject material.

Subject:
Biology
Chemistry
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Prather, Kristala
Date Added:
01/01/2005
Biochemistry
Unrestricted Use
CC BY
Rating

Biochemistry is the study of the chemical processes and compounds, such as cellular makeup, that bring about life in organisms. This course will look at how these formed biomolecules interact and produce many of life's necessary processes. Also it will look at the most commonly used techniques in biochemistry research. Upon successful completion of this course, students will be able to: recognize and describe the structure of the following basic biomolecules: nucleic acids, amino acids, lipids, carbohydrates; diagram how these basic biomolecules are used as building blocks for more complex biomolecules; differentiate between reactions that create biomolecules; describe how these biomolecules are used in specific cellular pathways and processes; analyze how feedback from one pathway influences other pathways; explain how energy is utilized by a cell; indicate how biomolecules and pathways are regulated; describe how enzymes play a key role in catalysis; assess which biochemical technique should be used to study a given biochemical problem. (Biology 401; See also: Chemistry 109)

Subject:
Biology
Chemistry
Material Type:
Full Course
Provider:
The Saylor Foundation
Date Added:
03/04/2019
Biofundamentals 2.0
Conditional Remix & Share Permitted
CC BY-SA
Rating

Our goal is to present the key observations and unifying concepts upon which modern biology is based; it is not a survey of all biology! Once understood, these foundational observations and concepts should enable you to approach any biological process, from disease to kindness, from a scientific perspective. To understand biological systems we need to consider them from two complementary perspectives; how they came to be (the historic, that is, evolutionary) and how their structures, traits, and behaviors are produced (the mechanistic, that is, the physicochemical)

Subject:
Biology
Material Type:
Textbook
Provider:
University of Colorado Boulder
Provider Set:
Virtual Laboratories
Author:
Melanie M. Cooper
Michael W. Klymkowski
Date Added:
06/27/2016
Bioinformatics II Lab
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

This course is a continuation of Bioinformatics I. Topics include gene expression, microarrays, next- generation sequencing methods, RNA-seq, large genomic projects, protein structure and stability, protein folding, and computational structure prediction of proteins; proteomics; and protein-nucleic acid interactions. The lab component includes R-based statistical data analysis on large datasets, introduction to big data analysis tools, protein visualization software, internet-based tools and high-level programming languages.

Subject:
Biology
Material Type:
Activity/Lab
Full Course
Provider:
CUNY
Provider Set:
New York City College of Technology
Author:
Eugenia Giannopoulou
Date Added:
10/18/2019
Bioinformatics and Computational Biology Solutions Using R and Bioconductor
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

Covers the basics of R software and the key capabilities of the Bioconductor project (a widely used open source and open development software project for the analysis and comprehension of data arising from high-throughput experimentation in genomics and molecular biology and rooted in the open source statistical computing environment R), including importation and preprocessing of high-throughput data from microarrays and other platforms. Also introduces statistical concepts and tools necessary to interpret and critically evaluate the bioinformatics and computational biology literature. Includes an overview of of preprocessing and normalization, statistical inference, multiple comparison corrections, Bayesian Inference in the context of multiple comparisons, clustering, and classification/machine learning.

Subject:
Biology
Material Type:
Activity/Lab
Full Course
Lecture Notes
Syllabus
Provider:
Johns Hopkins Bloomberg School of Public Health
Provider Set:
JHSPH OpenCourseWare
Author:
Irizarry, Rafael
Date Added:
03/04/2019