Biology 2e is designed to cover the scope and sequence requirements of a …
Biology 2e is designed to cover the scope and sequence requirements of a typical two-semester biology course for science majors. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology includes rich features that engage students in scientific inquiry, highlight careers in the biological sciences, and offer everyday applications. The book also includes various types of practice and homework questions that help students understand—and apply—key concepts. The 2nd edition has been revised to incorporate clearer, more current, and more dynamic explanations, while maintaining the same organization as the first edition. Art and illustrations have been substantially improved, and the textbook features additional assessments and related resources.
By the end of this section, you will be able to do …
By the end of this section, you will be able to do the following:
Discuss the role of carbohydrates in cells and in the extracellular materials of animals and plants Explain carbohydrate classifications List common monosaccharides, disaccharides, and polysaccharides
Chemistry: Atoms First is a peer-reviewed, openly licensed introductory textbook produced through …
Chemistry: Atoms First is a peer-reviewed, openly licensed introductory textbook produced through a collaborative publishing partnership between OpenStax and the University of Connecticut and UConn Undergraduate Student Government Association.
This title is an adaptation of the OpenStax Chemistry text and covers scope and sequence requirements of the two-semester general chemistry course. Reordered to fit an atoms first approach, this title introduces atomic and molecular structure much earlier than the traditional approach, delaying the introduction of more abstract material so students have time to acclimate to the study of chemistry. Chemistry: Atoms First also provides a basis for understanding the application of quantitative principles to the chemistry that underlies the entire course.
This concept-building module contains a variety of simulations for exploring factors that …
This concept-building module contains a variety of simulations for exploring factors that cause molecules to attract each other. It was developed to help secondary students understand both polar and non-polar covalent bonding. Users can manipulate models to see how the strength of attraction is affected by distance from one molecule to another, by heating the substance, and by mixing polar and non-polar substances. Part II of the activity is devoted to hydrogen bonds, and explores why water is one of the most important molecules for life's existence. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology.
This interactive activity for grades 8-12 features eight models that explore atomic …
This interactive activity for grades 8-12 features eight models that explore atomic arrangements for gases, solids, and liquids. Highlight an atom and view its trajectory to see how the motion differs in each of the three primary phases. As the lesson progresses, students observe and manipulate differences in attractions among atoms in each state and experiment with adding energy to produce state changes. More advanced students can explore models of latent heat and evaporative cooling. This item is part of the Concord Consortium, a nonprofit research and development organization dedicated to transforming education through technology.
This is the first semester in a two-semester introductory course focused on …
This is the first semester in a two-semester introductory course focused on current theories of structure and mechanism in organic chemistry, their historical development, and their basis in experimental observation. The course is open to freshmen with excellent preparation in chemistry and physics, and it aims to develop both taste for original science and intellectual skills necessary for creative research.
Basic molecular structural principles of biological materials. Molecular structures of various materials …
Basic molecular structural principles of biological materials. Molecular structures of various materials of biological origin, including collagen, silk, bone, protein adhesives, GFP, self-assembling peptides. Molecular design of new biological materials for nanotechnology, biocomputing and regenerative medicine. Graduate students are expected to complete additional coursework. This course, intended for both graduate and upper level undergraduate students, will focus on understanding of the basic molecular structural principles of biological materials. It will address the molecular structures of various materials of biological origin, such as several types of collagen, silk, spider silk, wool, hair, bones, shells, protein adhesives, GFP, and self-assembling peptides. It will also address molecular design of new biological materials applying the molecular structural principles. The long-term goal of this course is to teach molecular design of new biological materials for a broad range of applications. A brief history of biological materials and its future perspective as well as its impact to the society will also be discussed. Several experts will be invited to give guest lectures.
An intensive survey of structure, reactions and synthesis of the main classes …
An intensive survey of structure, reactions and synthesis of the main classes of organic compounds. Laboratory illustrates the preparation, purification and identification of organic compounds by classical and instrumental methods.
Introduction to organic chemistry. Development of basic principles to understand the structure …
Introduction to organic chemistry. Development of basic principles to understand the structure and reactivity of organic molecules. Emphasis on substitution and elimination reactions and chemistry of the carbonyl group. Introduction to the chemistry of aromatic compounds.
Introductory quantum chemistry; particles and waves; wave mechanics; atomic structure and the …
Introductory quantum chemistry; particles and waves; wave mechanics; atomic structure and the Periodic Table; valence and molecular orbital theory; molecular structure; and photochemistry.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.