Updating search results...

Search Resources

19 Results

View
Selected filters:
  • cancer
Biological Engineering Design, Spring 2010
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course illustrates how knowledge and principles of biology, biochemistry, and engineering are integrated to create new products for societal benefit. It uses a case study format to examine recently developed products of pharmaceutical and biotechnology industries: how a product evolves from initial idea, through patents, testing, evaluation, production, and marketing. Emphasizes scientific and engineering principles; the responsibility scientists, engineers, and business executives have for the consequences of their technology; and instruction and practice in written and oral communication. The topic focus of this class will vary from year to year. This version looks at inflammation underlying many diseases, specifically its role in cancer, diabetes, and cardiovascular disease.

Subject:
Biology
Chemistry
Life Science
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Banuazizi, Atissa
Breindel, Harlan
Essigmann, John
Irvine, Darrell
Poe, Mya
White, Forest
Date Added:
01/01/2010
Biology 2e
Unrestricted Use
CC BY
Rating
0.0 stars

Biology 2e is designed to cover the scope and sequence requirements of a typical two-semester biology course for science majors. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology includes rich features that engage students in scientific inquiry, highlight careers in the biological sciences, and offer everyday applications. The book also includes various types of practice and homework questions that help students understand—and apply—key concepts. The 2nd edition has been revised to incorporate clearer, more current, and more dynamic explanations, while maintaining the same organization as the first edition. Art and illustrations have been substantially improved, and the textbook features additional assessments and related resources.

Subject:
Biology
Material Type:
Full Course
Provider:
Rice University
Provider Set:
OpenStax College
Date Added:
03/07/2018
Biology 2e, Genetics, Gene Expression, Cancer and Gene Regulation
Unrestricted Use
CC BY
Rating
0.0 stars

By the end of this section, you will be able to do the following:

Describe how changes to gene expression can cause cancer
Explain how changes to gene expression at different levels can disrupt the cell cycle
Discuss how understanding regulation of gene expression can lead to better drug design

Subject:
Applied Science
Material Type:
Module
Date Added:
09/20/2018
Biology 2e, The Cell, Cell Reproduction, Cancer and the Cell Cycle
Unrestricted Use
CC BY
Rating
0.0 stars

By the end of this section, you will be able to do the following:

Describe how cancer is caused by uncontrolled cell growth
Understand how proto-oncogenes are normal cell genes that, when mutated, become oncogenes
Describe how tumor suppressors function
Explain how mutant tumor suppressors cause cancer

Subject:
Applied Science
Material Type:
Module
Date Added:
09/20/2018
Concepts of Fitness and Wellness
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This open textbook for Concepts of Fitness and Wellness at Georgia Highlands College was created through a Round Seven ALG Textbook Transformation Grant.

Subject:
Applied Science
Health, Medicine and Nursing
Material Type:
Textbook
Provider:
University System of Georgia
Provider Set:
Galileo Open Learning Materials
Author:
Althea Moser
Christin Collins
Connie Watjen
David Mathis
Jonathan Howard
Lisa Jellum
Scott Flynn
Sharryse Henderson
Date Added:
03/09/2018
The Fountain of Life: From Dolly to Customized Embryonic Stem Cells, Fall 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" During development, the genetic content of each cell remains, with a few exceptions, identical to that of the zygote. Most differentiated cells therefore retain all of the genetic information necessary to generate an entire organism. It was through pioneering technology of somatic cell nuclear transfer (SCNT) that this concept was experimentally proven. Only 10 years ago the sheep Dolly was the first mammal to be cloned from an adult organism, demonstrating that the differentiated state of a mammalian cell can be fully reversible to a pluripotent embryonic state. A key conclusion from these experiments was that the difference between pluripotent cells such as embryonic stem (ES) cells and unipotent differentiated cells is solely a consequence of reversible changes. These changes, which have proved to involve reversible alterations to both DNA and to proteins that bind DNA, are known as epigenetic, to distinguish them from genetic alterations to DNA sequence. In this course we will explore such epigenetic changes and study different approaches that can return a differentiated cell to an embryonic state in a process referred to as epigenetic reprogramming, which will ultimately allow generation of patient-specific stem cells and application to regenerative therapy. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching."

Subject:
Biology
Genetics
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Meissner, Alexander
Date Added:
01/01/2007
Frontiers in Biomedical Engineering
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The course covers basic concepts of biomedical engineering and their connection with the spectrum of human activity. It serves as an introduction to the fundamental science and engineering on which biomedical engineering is based. Case studies of drugs and medical products illustrate the product development-product testing cycle, patent protection, and FDA approval. It is designed for science and non-science majors.

Subject:
Applied Science
Health, Medicine and Nursing
Material Type:
Full Course
Provider:
Yale University
Provider Set:
Open Yale Courses
Author:
Mark Saltzman
Date Added:
03/07/2019
General Biology I
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

An integrated course stressing the principles of biology. Life processes are examined primarily at the molecular and cellular levels. Intended for students majoring in biology or for non-majors who wish to take advanced biology courses.

Subject:
Biology
Chemistry
Genetics
Life Science
Physical Science
Material Type:
Activity/Lab
Full Course
Lecture Notes
Syllabus
Provider:
UMass Boston
Provider Set:
UMass Boston OpenCourseWare
Author:
Ph.D.
Professor Brian White
Date Added:
03/04/2019
Introduction to Biology, Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Date Added:
01/01/2004
Macroepidemiology (BE.102), Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This course presents a unique and challenging perspective on the causes of human disease and mortality. The course focuses on analyses of major causes of mortality in the US since 1900: cancer cardiovascular and cerebrovascular diseases, diabetes, infectious diseases. Students create analytical models to derive estimates for historically variant population risk factors and physiological rate parameters, and conduct analyses of familial data to separately estimate inherited and environmental risks. The course evaluates the basic population genetics of dominant, recessive and non-deleterious inherited risk factors.

Subject:
Applied Science
Environmental Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Thilly, William
Date Added:
01/01/2005
Molecular and Cellular Pathophysiology (BE.450), Spring 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This courses focuses on the fundamentals of tissue and organ response to injury from a molecular and cellular perspective. There is a special emphasis on disease states that bridge infection, inflammation, immunity, and cancer. The systems approach to pathophysiology includes lectures, critical evaluation of recent scientific papers, and student projects and presentations. This term, we focus on hepatocellular carcinoma (HCC), chronic-active hepatitis, and hepatitis virus infections. In addition to lectures, students work in teams to critically evaluate and present primary scientific papers.

Subject:
Anatomy/Physiology
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Schauer, David
Date Added:
01/01/2005
Principles of Human Disease, Spring 2006
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Covers current understanding of and modern approaches to human disease, emphasizing the molecular and cellular basis of both genetic disease and cancer. Specific topics include the genetics of simple and complex traits; Karyotypic analysis and positional cloning; genetic diagnosis; the roles of oncogenes and tumor suppressors in tumor initiation, progression and treatment; the interaction between genetics and environment; animal models of human disease; cancer; and conventional and gene therapy treatment strategies.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Housman, David
Date Added:
01/01/2006
Science Forward
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

A project of Macaulay Honors College and CUNY Advance, "Science Forward is a new type of undergraduate science seminar, helping students to see science as a lens on the world, a way of approaching questions and challenges. The course focuses on the critical thinking skills in use across the scientific disciplines, which we have summarized as the “science senses.” Starting with critical issues in the contemporary world, from climate change to the social and economic implications of artificial intelligence, the course encourages active learning and inquiry-based instruction."

Subject:
Applied Science
Life Science
Physical Science
Material Type:
Activity/Lab
Homework/Assignment
Lesson
Module
Reading
Reference
Syllabus
Tutorial
Provider:
CUNY
Provider Set:
Macaulay Honors College
Author:
CUNY Advance
CUNY Macaulay Honors College
Date Added:
03/01/2019
Tumor Pathophysiology and Transport Phenomena, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Tumor pathophysiology plays a central role in the growth, metastasis, detection, and treatment of solid tumors. Principles of transport phenomena are applied to develop a quantitative understanding of angiogenesis (formation of new blood vessels), blood flow and microcirculation, metabolism and microenvironment, transport and binding of small and large molecules, movement of cancer and immune cells, metastatic process, radiotherapy, chemotherapy, immunotherapy, hyperthermia, and photodynamic therapy of solid tumors.

Subject:
Applied Science
Health, Medicine and Nursing
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Jain, Rakesh
Date Added:
01/01/2005
Tumor Suppressor Gene: How the Guardian of our Genome Prevents Cancer, Fall 2010
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Cancer is a leading cause of death worldwide. Cancer involves uncontrolled cell growth, resistance to cell death, failure to differentiate into a particular cell type, and increased cellular motility. A family of gate-keeper genes, known as tumor suppressor genes, plays important roles in preventing the initiation and progression of cancer. Among these, p53 is the most famous. Because of its essential role in maintaining genomic integrity, p53 is often called the guardian of the genome. During this course, we will study how p53 serves as a pivotal tumor suppressor gene in preventing cancer.This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Xue, Wen
Date Added:
01/01/2010