" This course provides an introduction to the language of schemes, properties ...

" This course provides an introduction to the language of schemes, properties of morphisms, and sheaf cohomology. Together with 18.725 Algebraic Geometry, students gain an understanding of the basic notions and techniques of modern algebraic geometry."

This course is an introduction to the calculus of functions of several ...

This course is an introduction to the calculus of functions of several variables. It begins with studying the basic objects of multidimensional geometry: vectors and vector operations, lines, planes, cylinders, quadric surfaces, and various coordinate systems. It continues with the elementary differential geometry of vector functions and space curves. After this, it extends the basic tools of differential calculus - limits, continuity, derivatives, linearization, and optimization - to multidimensional problems. The course will conclude with a study of integration in higher dimensions, culminating in a multidimensional version of the substitution rule.

This course is an introduction to differential geometry. The course itself is ...

This course is an introduction to differential geometry. The course itself is mathematically rigorous, but still emphasizes concrete aspects of geometry, centered on the notion of curvature.

" Double affine Hecke algebras (DAHA), also called Cherednik algebras, and their ...

" Double affine Hecke algebras (DAHA), also called Cherednik algebras, and their representations appear in many contexts: integrable systems (Calogero-Moser and Ruijsenaars models), algebraic geometry (Hilbert schemes), orthogonal polynomials, Lie theory, quantum groups, etc. In this course we will review the basic theory of DAHA and their representations, emphasizing their connections with other subjects and open problems."

Seminar on a selected topic from Renaissance architecture. Requires original research and ...

Seminar on a selected topic from Renaissance architecture. Requires original research and presentation of a report. The aim of this course is to highlight some technical aspects of the classical tradition in architecture that have so far received only sporadic attention. It is well known that quantification has always been an essential component of classical design: proportional systems in particular have been keenly investigated. But the actual technical tools whereby quantitative precision was conceived, represented, transmitted, and implemented in pre-modern architecture remain mostly unexplored. By showing that a dialectical relationship between architectural theory and data-processing technologies was as crucial in the past as it is today, this course hopes to promote a more historically aware understanding of the current computer-induced transformations in architectural design.

This text is intended for a brief introductory course in plane geometry. ...

This text is intended for a brief introductory course in plane geometry. It covers the topics from elementary geometry that are most likely to be required for more advanced mathematics courses. The only prerequisite is a semester of algebra. The emphasis is on applying basic geometric principles to the numerical solution of problems. For this purpose the number of theorems and definitions is kept small. Proofs are short and intuitive, mostly in the style of those found in a typical trigonometry or precalculus text. There is little attempt to teach theorem-proving or formal methods of reasoning. However the topics are ordered so that they may be taught deductively. The problems are arranged in pairs so that just the odd-numbered or just the even-numbered can be assigned. For assistance, the student may refer to a large number of completely worked-out examples. Most problems are presented in diagram form so that the difficulty of translating words into pictures is avoided. Many problems require the solution of algebraic equations in a geometric context. These are included to reinforce the student's algebraic and numerical skills, A few of the exercises involve the application of geometry to simple practical problems. These serve primarily to convince the student that what he or she is studying is useful. Historical notes are added where appropriate to give the student a greater appreciation of the subject. This book is suitable for a course of about 45 semester hours. A shorter course may be devised by skipping proofs, avoiding the more complicated problems and omitting less crucial topics.

This text is intended for a brief introductory course in plane geometry. ...

This text is intended for a brief introductory course in plane geometry. It covers the topics from elementary geometry that are most likely to be required for more advanced mathematics courses. The only prerequisite is a semester of algebra. The emphasis is on applying basic geometric principles to the numerical solution of problems. For this purpose the number of theorems and definitions is kept small. Proofs are short and intuitive, mostly in the style of those found in a typical trigonometry or precalculus text. There is little attempt to teach theorem proving or formal methods of reasoning. However the topics are ordered so that they may be taught deductively. The problems are arranged in pairs so that just the odd-numbered or just the even-numbered can be assigned. For assistance, the student may refer to a large number of completely worked-out examples. Most problems are presented in diagram form so that the difficulty of translating words into pictures is avoided. Many problems require the solution of algebraic equations in a geometric context, These are included to reinforce the student's algebraic and numerical skills. A few of the exercises involve the application of geometry to simple practical problems, These serve primarily to convince the student that what he or she is studying is useful. Historical notes are added where appropriate to give the student a greater appreciation of the subject. This book is suitable for a course of about 45 semester hours. A shorter course may be devised by skipping proofs, avoiding the more complicated problems and omitting less crucial topics. from the preface

This course is an intensive introduction to architectural design tools and process, ...

This course is an intensive introduction to architectural design tools and process, and is taught through a series of short exercises. The conceptual basis of each exercise is in the interrogation of the geometric principles that lie at the core of each skill. Skills covered in this course range from techniques of hand drafting, to generation of 3D computer models, physical model-building, sketching, and diagramming. Weekly lectures and pin-ups address the conventions associated with modes of architectural representation and their capacity to convey ideas. This course is tailored and offered only to first-year M.Arch students.

A rigorous introduction designed for mathematicians into perturbative quantum field theory, using ...

A rigorous introduction designed for mathematicians into perturbative quantum field theory, using the language of functional integrals. Basics of classical field theory. Free quantum theories. Feynman diagrams. Renormalization theory. Local operators. Operator product expansion. Renormalization group equation. The goal is to discuss, using mathematical language, a number of basic notions and results of QFT that are necessary to understand talks and papers in QFT and string theory.

This is a second-semester graduate course on the geometry of manifolds. The ...

This is a second-semester graduate course on the geometry of manifolds. The main emphasis is on the geometry of symplectic manifolds, but the material also includes long digressions into complex geometry and the geometry of 4-manifolds, with special emphasis on topological considerations.

Studies how randomization can be used to make algorithms simpler and more ...

Studies how randomization can be used to make algorithms simpler and more efficient via random sampling, random selection of witnesses, symmetry breaking, and Markov chains. Models of randomized computation. Data structures: hash tables, and skip lists. Graph algorithms: minimum spanning trees, shortest paths, and minimum cuts. Geometric algorithms: convex hulls, linear programming in fixed or arbitrary dimension. Approximate counting; parallel algorithms; online algorithms; derandomization techniques; and tools for probabilistic analysis of algorithms.

This course has been designed to help students focus learning on specific ...

This course has been designed to help students focus learning on specific areas of improvement. Unlike a typical college course where you would complete lessons in chronological order, this course allows you to focus on specific skills. Modules include: Arithmetic Review, Percents, Geometric Figures, Measurement, and Statistics

In this undergraduate level seminar series topics vary from year to year. ...

In this undergraduate level seminar series topics vary from year to year. Students present and discuss the subject matter, and are provided with instruction and practice in written and oral communication. Some experience with proofs required. The topic for fall 2008: Computational algebra and algebraic geometry.

The main aims of this seminar will be to go over the ...

The main aims of this seminar will be to go over the classification of surfaces (Enriques-Castelnuovo for characteristic zero, Bombieri-Mumford for characteristic p), while working out plenty of examples, and treating their geometry and arithmetic as far as possible.

Topics vary from year to year. Fall Term: Numerical properties and vanish ...

Topics vary from year to year. Fall Term: Numerical properties and vanish theorems for ample, nef, and big line bundles and vector bundles; multiplier ideals and their applications

This is an introductory (i.e. first year graduate students are welcome and ...

This is an introductory (i.e. first year graduate students are welcome and expected) course in generalized geometry, with a special emphasis on Dirac geometry, as developed by Courant, Weinstein, and Severa, as well as generalized complex geometry, as introduced by Hitchin. Dirac geometry is based on the idea of unifying the geometry of a Poisson structure with that of a closed 2-form, whereas generalized complex geometry unifies complex and symplectic geometry. For this reason, the latter is intimately related to the ideas of mirror symmetry.

" This course will focus on various aspects of mirror symmetry. It ...

" This course will focus on various aspects of mirror symmetry. It is aimed at students who already have some basic knowledge in symplectic and complex geometry (18.966, or equivalent). The geometric concepts needed to formulate various mathematical versions of mirror symmetry will be introduced along the way, in variable levels of detail and rigor."

These five units were specifically tailored to foster the mastery of a ...

These five units were specifically tailored to foster the mastery of a few selected trigonometry topics that comprise the one credit MA-121 Elementary Trigonometry course. Each unit introduces the topic, provides space for practice, but more importantly, provides opportunities for students to reflect on the work in order to deepen their conceptual understanding. These units have also been assigned to students of other courses such as pre-calculus and calculus as a review of trigonometric basics essential to those courses. We are grateful for the support we received from the Open Educational Research (OER) initiative of the City University of New York (CUNY).

No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.

Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.

Your redistributing comes with some restrictions. Do not remix or make derivative works.

Most restrictive license type. Prohibits most uses, sharing, and any changes.

Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.