Imagine you are a salesman needing to visit 100 cities connected by …
Imagine you are a salesman needing to visit 100 cities connected by a set of roads. Can you do it while stopping in each city only once? Even a supercomputer working at 1 trillion operations per second would take longer than the age of the universe to find a solution when considering each possibility in turn. In 1994, Leonard Adleman published a paper in which he described a solution, using the tools of molecular biology, for a smaller 7-city example of this problem. His paper generated enormous scientific and public interest, and kick-started the field of Biological Computing, the main subject of this discussion based seminar course. Students will analyze the Adleman paper, and the papers that preceded and followed it, with an eye for identifying the engineering and scientific aspects of each paper, emphasizing the interplay of these two approaches in the field of Biological Computing. This course is appropriate for both biology and non-biology majors. Care will be taken to fill in any knowledge gaps for both scientists and engineers.
Biology 2e is designed to cover the scope and sequence requirements of a …
Biology 2e is designed to cover the scope and sequence requirements of a typical two-semester biology course for science majors. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology includes rich features that engage students in scientific inquiry, highlight careers in the biological sciences, and offer everyday applications. The book also includes various types of practice and homework questions that help students understand—and apply—key concepts. The 2nd edition has been revised to incorporate clearer, more current, and more dynamic explanations, while maintaining the same organization as the first edition. Art and illustrations have been substantially improved, and the textbook features additional assessments and related resources.
By the end of this section, you will be able to do …
By the end of this section, you will be able to do the following:
Identify and describe the properties of life Describe the levels of organization among living things Recognize and interpret a phylogenetic tree List examples of different subdisciplines in biology
" This course teaches the design of contemporary information systems for biological …
" This course teaches the design of contemporary information systems for biological and medical data. Examples are chosen from biology and medicine to illustrate complete life cycle information systems, beginning with data acquisition, following to data storage and finally to retrieval and analysis. Design of appropriate databases, client-server strategies, data interchange protocols, and computational modeling architectures. Students are expected to have some familiarity with scientific application software and a basic understanding of at least one contemporary programming language (e.g. C, C++, Java, Lisp, Perl, Python). A major term project is required of all students. This subject is open to motivated seniors having a strong interest in biomedical engineering and information system design with the ability to carry out a significant independent project. This course was offered as part of the Singapore-MIT Alliance (SMA) program as course number SMA 5304."
Like most introductory science textbooks, this one opens with a discussion of …
Like most introductory science textbooks, this one opens with a discussion of scientific method. A key feature is its focus on experimental support for what we know about cell and molecular biology. Understanding how science is practiced and how investigators think about experimental results is essential to understanding the relationship of cell structure and function…, not to mention our relationship to the natural world. This is a free Open Education Resource (OER), covered by a Creative Commons CCBY license (check out the Preface!). Every chapter begins with learning objectives and links to relevant recorded lectures. As used by the author, the iText engages students with embedded “just-in-time” learning tools. These include instructor’s annotations (comments) directing students to animations or text of interest, as well as links to writing assignments and quizzes. These interactive features aim to strengthen critical thinking and writing skills necessary to understand cell and molecular biology, not to mention science as a way of thinking in general. Please excuse the marketing terms, but you can choose between Bronze, Silver, or Gold versions, reflecting increasing potential for student interaction with the iText. Download your choice of the iText or the sample chapter at one of the links below.
Concepts of Biology is designed for the introductory biology course for nonmajors …
Concepts of Biology is designed for the introductory biology course for nonmajors taught at most two- and four-year colleges. The scope, sequence, and level of the program are designed to match typical course syllabi in the market. Concepts of Biology includes interesting applications, features a rich art program, and conveys the major themes of biology.
Designed for students without previous experience in techniques of cellular and molecular …
Designed for students without previous experience in techniques of cellular and molecular biology, this class teaches basic experimental techniques in cellular and molecular neurobiology. Experimental approaches covered include tissue culture of neuronal cell lines, dissection and culture of brain cells, DNA manipulation, synaptic protein analysis, immunocytochemistry, and fluorescent microscopy.
This course introduces the basic driving forces for electric current, fluid flow, …
This course introduces the basic driving forces for electric current, fluid flow, and mass transport, plus their application to a variety of biological systems. Basic mathematical and engineering tools will be introduced, in the context of biology and physiology. Various electrokinetic phenomena are also considered as an example of coupled nature of chemical-electro-mechanical driving forces. Applications include transport in biological tissues and across membranes, manipulation of cells and biomolecules, and microfluidics.
Since the discovery of the structure of the DNA double helix in …
Since the discovery of the structure of the DNA double helix in 1953 by Watson and Crick, the information on detailed molecular structures of DNA and RNA, namely, the foundation of genetic material, has expanded rapidly. This discovery is the beginning of the "Big Bang" of molecular biology and biotechnology. In this seminar, students discuss, from a historical perspective and current developments, the importance of pursuing the detailed structural basis of genetic materials.
This course is recommended for students who will transfer into STEM or …
This course is recommended for students who will transfer into STEM or health-care-related programs. The course will introduce students to the major concepts of cell biology, including cell physiology and structure, molecular biology, genetics and evolution. The course will also cover the major themes of biology, with particular focus on the characteristics of living things.
An integrated course stressing the principles of biology. Life processes are examined …
An integrated course stressing the principles of biology. Life processes are examined primarily at the molecular and cellular levels. Intended for students majoring in biology or for non-majors who wish to take advanced biology courses.
The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover …
The MIT Biology Department core courses, 7.012, 7.013, and 7.014, all cover the same core material, which includes the fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms. In addition, each version of the subject has its own distinctive material.
The pages represent an online biology textbook created by Professor John W. …
The pages represent an online biology textbook created by Professor John W. Kimball who taught at Harvard, Tufts, and Phillips Andover Academy before he retired. He now maintains this free biology book, constantly updated and set up for easy browsing and searching.
Detailed analysis of the biochemical mechanisms that control the maintenance, expression, and …
Detailed analysis of the biochemical mechanisms that control the maintenance, expression, and evolution of prokaryotic and eukaryotic genomes. Topics covered in lecture and readings of relevant literature include: gene regulation, DNA replication, genetic recombination, and translation. Logic of experimental design and data analysis emphasized. Presentations include both lectures and group discussions of representative papers from the literature.
An introductory course in the molecular biology of the auditory system. First …
An introductory course in the molecular biology of the auditory system. First half focuses on human genetics and molecular biology, covering fundamentals of pedigree analysis, linkage analysis, molecular cloning, and gene analysis as well as ethical/legal issues, all in the context of an auditory disorder. Second half emphasizes molecular approaches to function and dysfunction of the cochlea, and is based on readings and discussion of research literature.
BI102A is a survey course that introduces the discipline of molecular biology …
BI102A is a survey course that introduces the discipline of molecular biology and genetics, exploring topics including cell division, protein production, inheritance and gene regulation. This book focuses on putting those topics into an appropriate context for students who are not biology majors.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.