Updating search results...

Search Resources

11 Results

View
Selected filters:
  • enzyme
Biochemistry Laboratory, Spring 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" The course, which spans two thirds of a semester, provides students with a research-inspired laboratory experience that introduces standard biochemical techniques in the context of investigating a current and exciting research topic, acquired resistance to the cancer drug Gleevec. Techniques include protein expression, purification, and gel analysis, PCR, site-directed mutagenesis, kinase activity assays, and protein structure viewing. This class is part of the new laboratory curriculum in the MIT Department of Chemistry. Undergraduate Research-Inspired Experimental Chemistry Alternatives (URIECA) introduces students to cutting edge research topics in a modular format. Acknowledgments Development of this course was funded through an HHMI Professors grant to Professor Catherine L. Drennan."

Subject:
Chemistry
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Taylor, Elizabeth Vogel
Date Added:
01/01/2009
Biology 2e
Unrestricted Use
CC BY
Rating
0.0 stars

Biology 2e is designed to cover the scope and sequence requirements of a typical two-semester biology course for science majors. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology includes rich features that engage students in scientific inquiry, highlight careers in the biological sciences, and offer everyday applications. The book also includes various types of practice and homework questions that help students understand—and apply—key concepts. The 2nd edition has been revised to incorporate clearer, more current, and more dynamic explanations, while maintaining the same organization as the first edition. Art and illustrations have been substantially improved, and the textbook features additional assessments and related resources.

Subject:
Biology
Material Type:
Full Course
Provider:
Rice University
Provider Set:
OpenStax College
Date Added:
03/07/2018
Biology 2e, The Cell, Metabolism, Enzymes
Unrestricted Use
CC BY
Rating
0.0 stars

By the end of this section, you will be able to do the following:

Describe the role of enzymes in metabolic pathways
Explain how enzymes function as molecular catalysts
Discuss enzyme regulation by various factors

Subject:
Applied Science
Material Type:
Module
Date Added:
09/20/2018
Biology 2e, The Chemistry of Life, Biological Macromolecules, Proteins
Unrestricted Use
CC BY
Rating
0.0 stars

By the end of this section, you will be able to do the following:

Describe the functions proteins perform in the cell and in tissues
Discuss the relationship between amino acids and proteins
Explain the four levels of protein organization
Describe the ways in which protein shape and function are linked

Subject:
Applied Science
Material Type:
Module
Date Added:
09/20/2018
Biomolecular Kinetics and Cellular Dynamics (BE.420J), Fall 2004
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This subject deals primarily with kinetic and equilibrium mathematical models of biomolecular interactions, as well as the application of these quantitative analyses to biological problems across a wide range of levels of organization, from individual molecular interactions to populations of cells.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Tidor, Bruce
Wittrup, Karl
Date Added:
01/01/2004
Directed Evolution: Engineering Biocatalysts, Spring 2008
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Enzymes, nature's catalysts, are remarkable biomolecules capable of extraordinary specificity and selectivity. Directed evolution has been used to produce enzymes with many unique properties, including altered substrate specificity, thermal stability, organic solvent resistance, and enantioselectivity--selectivity of one stereoisomer over another. The technique of directed evolution comprises two essential steps: mutagenesis of the gene encoding the enzyme to produce a library of variants, and selection of a particular variant based on its desirable catalytic properties. In this course we will examine what kinds of enzymes are worth evolving and the strategies used for library generation and enzyme selection. We will focus on those enzymes that are used in the synthesis of drugs and in biotechnological applications. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.

Subject:
Biology
Life Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Love, Kerry
Date Added:
01/01/2008
Innovation in Military Organizations, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" This seminar has three purposes. One, it inquires into the causes of military innovation by examining a number of the most outstanding historical cases. Two, it views military innovations through the lens of organization theory to develop generalizations about the innovation process within militaries. Three, it uses the empirical study of military innovations as a way to examine the strength and credibility of hypotheses that organization theorists have generated about innovation in non-military organizations."

Subject:
Political Science
Social Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Posen, Barry
Sapolsky, Harvey
Date Added:
01/01/2005