Do energy and sustainability issues capture your attention? Do you find yourself …
Do energy and sustainability issues capture your attention? Do you find yourself seeking out articles, books, and/or movies related to these topics? After learning about core energy and sustainability issues, as well as information source evaluation and rhetorical analysis, students in EM SC 240 get the opportunity to explore and critically evaluate selected media from contemporary culture that focus on topics related to energy and sustainability. These media selections will relate specifically to earth, material, and energy processes and how humans interact with them. Students will evaluate the energy and sustainability subject matter from both scientific and cultural perspectives, with special emphasis on the need to sustain a viable planetary life support system.
Our world runs on energy - without it, things come to a …
Our world runs on energy - without it, things come to a screeching halt, as the recent hurricanes have shown. Ever stop to wonder what our energy future is? What are our options for energy, and what are the associated economic and climatic implications? In \Energy and the Environment\" we explore these questions, which together represent one of the great challenges of our time - providing energy for high quality of life and economic growth while avoiding dangerous climate change. This course takes an optimistic view of our prospects, and we'll see how shifting to renewable energy can lead to a viable future.
What is energy? It's the hot in heat, the glow in light, …
What is energy? It's the hot in heat, the glow in light, the push in wind, the pound in water, the sound of thunder and the crack of lightening. It is the pull that keeps us (and everything else!) from simply flying apart, and the promise of an oak deep in an acorn. It is all the same, and it is all different. Sunshine and waterfalls won't start your car, and wind won't run the dishwasher. But, if we match the form and timing of the energy with your needs, all of these things could be true. Energy in a Changing World is about the full arc of energy transformation, delivery, use, economics and environmental impact, especially climate change.
This subject provides an introduction to fluid mechanics. Students are introduced to …
This subject provides an introduction to fluid mechanics. Students are introduced to and become familiar with all relevant physical properties and fundamental laws governing the behavior of fluids and learn how to solve a variety of problems of interest to civil and environmental engineers. While there is a chance to put skills from Calculus and Differential Equations to use in this subject, the emphasis is on physical understanding of why a fluid behaves the way it does. The aim is to make the students think as a fluid. In addition to relating a working knowledge of fluid mechanics, the subject prepares students for higher-level subjects in fluid dynamics.
This interdisciplinary course examines current environmental issues from a macroeconomic perspective, focusing …
This interdisciplinary course examines current environmental issues from a macroeconomic perspective, focusing on both the long and short-term economic viability of various proposals to address current environmental challenges. Traditional goals of economic efficiency will be examined in the context of the need to expand renewable energy sources, green design, sustainable construction and resource allocation and other efforts to combat climate change on a global scale.
Study of physical effects in the vicinity of a black hole as …
Study of physical effects in the vicinity of a black hole as the basis for understanding general relativity, astrophysics, and elements of cosmology. Extension to current developments in theory and observation. Energy and momentum in flat spacetime; the metric; curvature or spacetime near rotating and nonrotating centers of attraction; the Global Positioning System and its dependence on general relativity; trajectories and orbits of particles. Subject has online component and classroom lectures are replaced with online interactions: manipulation of visualization software, access to websites describing current research, electronic submission of homework, and structured online discussions between undergraduates and alumni and with instructors and graduate specialists in the topics covered.
The need to identify sustainable forms of energy as an alternative to …
The need to identify sustainable forms of energy as an alternative to our dependence on depleting worldwide oil reserves is one of the grand challenges of our time. The energy from the sun converted into plant biomass is the most promising renewable resource available to humanity. This seminar will examine each of the critical steps along the pathway towards the conversion of plant biomass into ethanol. This course is one of many Advanced Undergraduate Seminars offered by the Biology Department at MIT. These seminars are tailored for students with an interest in using primary research literature to discuss and learn about current biological research in a highly interactive setting. Many instructors of the Advanced Undergraduate Seminars are postdoctoral scientists with a strong interest in teaching.
Have you seen a Clean Coal baseball cap? In the challenge to …
Have you seen a Clean Coal baseball cap? In the challenge to meet soaring energy demand with limited resources, volatile issues like those related to the environment, national security and public health are often addressed outside of normal market transactions and are called externalities, or nonmarket factors. Stakeholders can act in resourceful ways to create a nonmarket environment that best serves their interest. A firm may challenge a law that makes it expensive or difficult to do business or compete with others, for example. An individual may organize a boycott of products or services that violate the individual's interests or principles--hey, don't buy from them! Nonmarket strategy in the energy sector is the subject of this engaging course.
Meeting the energy needs of human beings depends on a thorough understanding …
Meeting the energy needs of human beings depends on a thorough understanding of the science of energy. Acting to meeting those needs in an environmentally and socially responsible way depends on ethical analysis and spiritual reflection. As with every topic in Healing Earth, today's energy challenges must be approached from the standpoint of an integral ecology--a standpoint that integrates science, ethics, spirituality, and action.
GEOG 438W is a writing-intensive course that concentrates on the human-environment interactions …
GEOG 438W is a writing-intensive course that concentrates on the human-environment interactions involved in contemporary and future global warming. The course comprises two broad topical areas: global warming impacts, which takes place in the first half of the course, and global warming mitigation and policy, which encompasses the second half of the course. Each week highlights a theme, such as the impacts of climate change on human health or greenhouse gas emissions from transportation, that weaves through the course lecture, reading assignment, class discussion, and writing activity.
This course covers the development of the fundamental equations of fluid mechanics …
This course covers the development of the fundamental equations of fluid mechanics and their simplifications for several areas of marine hydrodynamics and the application of these principles to the solution of engineering problems. Topics include the principles of conservation of mass, momentum and energy, lift and drag forces, laminar and turbulent flows, dimensional analysis, added mass, and linear surface waves, including wave velocities, propagation phenomena, and descriptions of real sea waves. Wave forces on structures are treated in the context of design and basic seakeeping analysis of ships and offshore platforms. Geophysical fluid dynamics will also be addressed including distributions of salinity, temperature, and density; heat balance in the ocean; major ocean circulations and geostrophic flows; and the influence of wind stress. Experimental projects conducted in ocean engineering laboratories illustrating concepts taught in class, including ship resistance and model testing, lift and drag forces on submerged bodies, and vehicle propulsion.
During this course, we will be exploring basic questions of architecture through …
During this course, we will be exploring basic questions of architecture through several short design exercises. Working with many different media, students will discover the interrelationship of architecture and its related disciplines, such as structures, sustainability, architectural history and the visual arts. Each problem will focus on one of these disciplines and one exploration and presentation technique.
Frameworks and Models for Technology and Policy students explore perspectives in the …
Frameworks and Models for Technology and Policy students explore perspectives in the policy process -- agenda setting, problem definition, framing the terms of debate, formulation and analysis of options, implementation and evaluation of policy outcomes using frameworks including economics and markets, law, and business and management. Methods include cost/benefit analysis, probabilistic risk assessment, and system dynamics. Exercises for Technology and Policy students include developing skills to work on the interface between technology and societal issues; simulation exercises; case studies; and group projects that illustrate issues involving multiple stakeholders with different value structures, high levels of uncertainty, multiple levels of complexity; and value trade-offs that are characteristic of engineering systems. Emphasis on negotiation, team building and group dynamics, and management of multiple actors and leadership. This course explores perspectives in the policy process - agenda setting, problem definition, framing the terms of debate, formulation and analysis of options, implementation and evaluation of policy outcomes using frameworks including economics and markets, law, and business and management. Methods include cost/benefit analysis, probabilistic risk assessment, and system dynamics. Exercises include developing skills to work on the interface between technology and societal issues; simulation exercises; case studies; and group projects that illustrate issues involving multiple stakeholders with different value structures, high levels of uncertainty, multiple levels of complexity; and value trade-offs that are characteristic of engineering systems. Emphasis on negotiation, team building and group dynamics, and management of multiple actors and leadership.
1.201J/11.545J/ESD.210J is required for all first-year Master of Science in Transportation students. …
1.201J/11.545J/ESD.210J is required for all first-year Master of Science in Transportation students. It would be of interest to, as well as accessible to, students in Urban Studies and Planning, Political Science, Technology and Policy, Management, and various engineering departments. It is a good subject for those who plan to take only one subject in transportation and serves as an entry point to other transportation subjects as well. The subject focuses on fundamental principles of transportation systems, introduces transportation systems components and networks, and addresses how one invests in and operates them effectively. The tie between transportation and related systems is emphasized.
This course is a required sophomore subject in the Department of Materials …
This course is a required sophomore subject in the Department of Materials Science and Engineering, designed to be taken in conjunction with the core lecture subject 3.012 Fundamentals of Materials Science and Engineering. The laboratory subject combines experiments illustrating the principles of quantum mechanics, thermodynamics and structure with intensive oral and written technical communication practice. Specific topics include: experimental exploration of the connections between energetics, bonding and structure of materials, and application of these principles in instruments for materials characterization; demonstration of the wave-like nature of electrons; hands-on experience with techniques to quantify energy (DSC), bonding (XPS, AES, FTIR, UV/vis and force spectroscopy), and degree of order (x-ray scattering) in condensed matter; and investigation of structural transitions and structure-property relationships through practical materials examples.
Parallel treatments of photons, electrons, phonons, and molecules as energy carriers, aiming …
Parallel treatments of photons, electrons, phonons, and molecules as energy carriers, aiming at fundamental understanding and descriptive tools for energy and heat transport processes from nanoscale continuously to macroscale. Topics include the energy levels, the statistical behavior and internal energy, energy transport in the forms of waves and particles, scattering and heat generation processes, Boltzmann equation and derivation of classical laws, deviation from classical laws at nanoscale and their appropriate descriptions, with applications in nano- and microtechnology.
EMSC 302 provides an orientation of the Energy and Sustainability Policy (ESP) …
EMSC 302 provides an orientation of the Energy and Sustainability Policy (ESP) degree program, preparing students for further study in the five program learning outcome areas: energy industry knowledge, global perspective, analytical skills, communication skills, and sustainability ethics. It also provides an introduction to the basic skills necessary to be successful in higher-ed online learning, including communication and library skills.
1. Introduction to Process Intensification (PI): - sustainability-related issues in process industry; …
1. Introduction to Process Intensification (PI): - sustainability-related issues in process industry; - definitions of Process Intensification; - fundamental principles and approaches of PI.
2. How to design a sustainable, inherently safer processing plant - presentation of PI case study assignments.
3. PI Approaches: - STRUCTURE - PI approach in spatial domain (incl. "FOCUS ON" guest lecture) - ENERGY - PI approach in thermodynamic domain - SYNERGY - PI approach in functional domain - TIME - PI approach in temporal domain Study Goals Basic knowledge in Process Intensification
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.