Updating search results...

Search Resources

321 Results

View
Selected filters:
  • Engineering
Electromagnetic Theory and Applications
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This book intends to provide both the fundamentals of Electromagnetics but also some practical applications of the concepts covered. Having taught electromagnetics for several years, the authors feel that many times the field of electromagnetics comes as “old” and often times students do not appreciate the concepts and their importance in everyday applications. The authors intend to accompany the EM concepts with life applications. Hence, students may see the direct impact of the knowledge they acquire through the study of the field of electromagnetics and better appreciate the field.

Subject:
Applied Science
Engineering
Physical Science
Physics
Material Type:
Textbook
Provider:
CUNY Academic Works
Provider Set:
City College
Author:
Kliros, George
Madamopoulos, Nicholas
Date Added:
01/30/2023
Electromagnetics, Volume 1
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

Electromagnetics Volume 1 by Steven W. Ellingson is a 225-page, peer-reviewed open educational resource intended for electrical engineering students in the third year of a bachelor of science degree program. It is intended as a primary textbook for a one-semester first course in undergraduate engineering electromagnetics. The book employs the “transmission lines first” approach in which transmission lines are introduced using a lumped-element equivalent circuit model for a differential length of transmission line, leading to one-dimensional wage equations for voltage and current.

Suggested citation: Ellingson, Steven W. (2018) Electromagnetics, Vol. 1. Blacksburg, VA: VT Publishing. https://doi.org/10.21061/electromagnetics-vol-1 CC BY-SA 4.0

Three formats of this book are available:
Print (ISBN 978-0-9979201-8-5)
PDF (ISBN 978-0-9979201-9-2)
LaTeX source files

If you are a professor reviewing, adopting, or adapting this textbook please help us understand a little more about your use by filling out this form: http://bit.ly/vtpublishing-updates

Additional Resources
Problem sets and the corresponding solution manual are also available.
Community portal for the Electromagnetics series https://www.oercommons.org/groups/electromagnetics-user-group/3455/
Faculty listserv for the Electromagnetics series https://groups.google.com/a/vt.edu/d/forum/electromagnetics-g
Submit feedback and suggestions http://bit.ly/electromagnetics-suggestion

Table of Contents:
Chapter 1: Preliminary Concepts
Chapter 2: Electric and Magnetic Fields
Chapter 3: Transmission Lines
Chapter 4: Vector Analysis
Chapter 5: Electrostatics
Chapter 6: Steady Current and Conductivity
Chapter 7: Magnetostatics
Chapter 8: Time-Varying Fields
Chapter 9: Plane Waves in Lossless Media
Appendixes
A. Constitutive Parameters of Some Common Materials
B. Mathematical Formulas
C. Physical Constants

About the Author: Steven W. Ellingson (ellingson@vt.edu) is an Associate Professor at Virginia Tech in Blacksburg, Virginia in the United States. He received PhD and MS degrees in Electrical Engineering from the Ohio State University and a BS in Electrical & Computer Engineering from Clarkson University. He was employed by the US Army, Booz-Allen & Hamilton, Raytheon, and the Ohio State University ElectroScience Laboratory before joining the faculty of Virginia Tech, where he teaches courses in electromagnetics, radio frequency systems, wireless communications, and signal processing. His research includes topics in wireless communications, radio science, and radio frequency instrumentation. Professor Ellingson serves as a consultant to industry and government and is the author of Radio Systems Engineering (Cambridge University Press, 2016).

This textbook is part of the Open Electromagnetics Project led by Steven W. Ellingson at Virginia Tech. The goal of the project is to create no-cost openly-licensed content for courses in undergraduate engineering electromagnetics. The project is motivated by two things: lowering learning material costs for students and giving faculty the freedom to adopt, modify, and improve their educational resources.

Accessibility features of this book: Screen reader friendly, navigation, and Alt-text for all images and figures.

Publication of this book was made possible in part by the Open Education Faculty Initiative Grant program at the University Libraries at Virginia Tech. http://guides.lib.vt.edu/oer/grants

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Textbook
Provider:
Virginia Tech
Provider Set:
VTech Works
Author:
Ellingson Steven W
Date Added:
03/07/2019
Electromagnetics and Applications, Spring 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

"This course explores electromagnetic phenomena in modern applications, including wireless and optical communications, circuits, computer interconnects and peripherals, microwave communications and radar, antennas, sensors, micro-electromechanical systems, and power generation and transmission. Fundamentals include quasistatic and dynamic solutions to Maxwell's equations; waves, radiation, and diffraction; coupling to media and structures; guided waves; resonance; acoustic analogs; and forces, power, and energy."

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Staelin, David
Date Added:
01/01/2009
Electromechanical Dynamics, Spring 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

First published in 1968 by John Wiley and Sons, Inc., Electromechanical Dynamics discusses the interaction of electromagnetic fields with media in motion. The subject combines classical mechanics and electromagnetic theory and provides opportunities to develop physical intuition. The book uses examples that emphasize the connections between physical reality and analytical models. Types of electromechanical interactions covered include rotating machinery, plasma dynamics, the electromechanics of biological systems, and magnetoelasticity. An accompanying solutions manual for the problems in the text is provided.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Woodson, Herbert H.
Date Added:
01/01/2009
Electromechanical Manufacturing Laboratory
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

This is the open educational resources (OER) site for EMT 1130 (Electrical Circuits Lab). Here you can find course information, assignments, syllabus, schedule, and course materials if EMT 1130.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Activity/Lab
Full Course
Provider:
CUNY
Provider Set:
New York City College of Technology
Author:
Farjana Ferdousy
Date Added:
10/18/2019
Electron Microprobe Analysis, January IAP 2012
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The electron microprobe provides a complete micrometer-scale quantitative chemical analysis of inorganic solids. The method is nondestructive and utilizes characteristic X-rays excited by an electron beam incident on a flat surface of the sample. This course provides an introduction to the theory of X-ray microanalysis through wavelength and energy dispersive spectrometry (WDS and EDS), ZAF matrix correction procedures and scanning electron imaging with back-scattered electron (BSE), secondary electron (SE), X-ray using WDS or EDS (elemental mapping), and cathodoluminescence (CL). Lab sessions involve hands-on use of the JEOL JXA-8200 Superprobe.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Nilanjan Chatterjee
Date Added:
01/01/2012
Electronic and Mechanical Properties of Materials, Fall 2007
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Electrical, optical, magnetic, and mechanical properties of metals, semiconductors, ceramics and polymers. Discussion of roles of bonding, structure (crystalline, defect, energy band and microstructure) and composition in influencing and controlling physical properties. Case studies drawn from a variety of applications including semiconductor diodes, optical detectors, sensors, thin films, biomaterials, composites, and cellular materials.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Fitzgerald, Eugene
Gibson, Lorna
Date Added:
01/01/2007
Elektronische Signaalbewerking
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Na het behalen van dit vak kan de student:

filter-overdrachtsfuncties middels state-space synthese afbeelden op filter-topologieen, deze optimaliseren m.b.t. dynamisch bereik en gevoeligheid voor componenten-variaties en realiseren met behulp van integratoren;
circuits voor integratoren, analoge filters, continue-tijd filters, en nullors (operationele versterkers) ontwerpen en effecten ten gevolge van niet-ideale componenten en aliasing analyseren

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
Dr.ir. W.A. Serdijn
Date Added:
03/07/2019
Elementary Differential Equations with Boundary Value Problems
Unrestricted Use
CC BY
Rating
0.0 stars

Elementary Differential Equations with Boundary Value Problems is written for students in science, engineering, and mathematics who have completed calculus through partial differentiation. If your syllabus includes Chapter 10 (Linear Systems of Differential Equations), your students should have some preparation in linear algebra. In writing this book I have been guided by the these principles: • An elementary text should be written so the student can read it with comprehension without too much pain. I have tried to put myself in the student’s place, and have chosen to err on the side of too much detail rather than not enough. • An elementary text can’t be better than its exercises. This text includes 2041 numbered exercises, many with several parts. They range in difficulty from routine to very challenging. • An elementary text should be written in an informal but mathematically accurate way, illustrated by appropriate graphics. I have tried to formulate mathematical concepts succinctly in language that students can understand. I have minimized the number of explicitly stated theorems and defonitions, preferring to deal with concepts in a more conversational way, copiously illustrated by 299 completely worked out examples. Where appropriate, concepts and results are depicted in 188 figures

Subject:
Applied Science
Engineering
Mathematics
Material Type:
Textbook
Provider:
Trinity University
Author:
William F. Trench
Date Added:
10/28/2014
Elements of Mechanical Design, Spring 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" This is an advanced course on modeling, design, integration and best practices for use of machine elements such as bearings, springs, gears, cams and mechanisms. Modeling and analysis of these elements is based upon extensive application of physics, mathematics and core mechanical engineering principles (solid mechanics, fluid mechanics, manufacturing, estimation, computer simulation, etc.). These principles are reinforced via (1) hands-on laboratory experiences wherein students conduct experiments and disassemble machines and (2) a substantial design project wherein students model, design, fabricate and characterize a mechanical system that is relevant to a real world application. Students master the materials via problems sets that are directly related to, and coordinated with, the deliverables of their project. Student assessment is based upon mastery of the course materials and the student's ability to synthesize, model and fabricate a mechanical device subject to engineering constraints (e.g. cost and time/schedule)."

Subject:
Applied Science
Career and Technical Education
Chemistry
Engineering
Genetics
Life Science
Manufacturing
Physical Science
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Culpepper, Martin
Date Added:
01/01/2009
Engineering Capacity in Community-Based Healthcare, Fall 2005
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This multidisciplinary seminar addresses fundamental issues in global health faced by community-based healthcare programs in developing countries. Students will broadly explore topics with expert lecturers and guided readings. Topics will be further illuminated with case studies from healthcare programs in urban centers of Zambia. Multidisciplinary teams will be formed to develop feasible solutions to specific health challenges posed in the case studies and encouraged to pursue their ideas beyond the seminar. Possible global health topics include community-based AIDS/HIV management, maternity care, health diagnostics, and information technology in patient management and tracking. Students from Medicine, Public Health, Engineering, Management, and Social Sciences are encouraged to enroll. No specific background experience is expected, but students should have some relevant skills or experiences.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Dakkak, Mary Ann
DelHagen, William
Mack, Peter
Soller, Eric
Date Added:
01/01/2005
Engineering Design I Model
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

***LOGIN REQUIRED*** Engineering Design provides learning opportunities for students interested in preparing for careers in the design and production of visual communications. Students plan, prepare, and interpret drawings and models through traditional drafting or computer-aided drafting and design (CADD) techniques.

Subject:
Applied Science
Engineering
Material Type:
Full Course
Lesson Plan
Provider:
Butte County Office of Education
Provider Set:
CTE Online
Date Added:
03/07/2019
Engineering Design for Circular Economy
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Products and equipment all around us are made of materials: look around you and you will see phones, computers, cars, and buildings. We face challenges in securing the supply of materials and the impact this has on the planet. Innovative product design can help us find solutions to these challenges. This course will explore new ways of designing products.

The design of products is an important aspect of a circular economy. The circular economy approach addresses material supply challenges by keeping materials in use much longer and eventually returning materials for new use. The principle is that waste must be minimized. Products will be designed to last longer. They will be easier to Reuse, Repair, and Remanufacture. The product will eventually be broken down and Recycled. This is Design for R and is the focus of this course.

Experts from leading European universities and research organizations will explain the latest strategies in product design. Current design approaches lead to waste, loss of value and loss of resources. You will learn about the innovative ways in which companies are creating value, whilst securing their supply chains, by integrating Design for R.

This course is suitable for all learners who have an interest in product design, innovative engineering, new business activity, entrepreneurship, sustainability, circular economy and everyone who thinks that the current way we do things today needs a radical rethink.

Subject:
Applied Science
Architecture and Design
Engineering
Material Type:
Full Course
Provider:
Delft University of Technology
Provider Set:
Delft University OpenCourseWare
Author:
David Peck
Dr. A. Lohrengel
Dr. E. van der Voet
Drs. Max Prumbohm
Date Added:
03/07/2019
Engineering Economy Module, Fall 2009
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

" This intensive micro-subject provides the necessary skills in Microsoftĺ¨ Excel spreadsheet modeling for ESD.71 Engineering Systems Analysis for Design. Its purpose is to bring entering students up to speed on some of the advanced techniques that we routinely use in analysis. It is motivated by our experience that many students only have an introductory knowledge of Excel, and thus waste a lot of time thrashing about unproductively. Many people think they know Excel, but overlook many efficient tools, such as Data Table and Goal Seek. It is also useful for a variety of other subjects."

Subject:
Applied Science
Engineering
Material Type:
Full Course
Provider:
M.I.T.
Provider Set:
M.I.T. OpenCourseWare
Author:
Cardin, Michel-Alexandre
de Neufville, Richard
Date Added:
01/01/2009
Engineering Laboratory 101
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

This lab introduces students to the fatigue failure of steels, plastics and ceramics when they are stressed in a controlled manner until they fail. Materials are subjected to repeated stress called fatigue and fatigue properties of different materials vary with type, source, quality, type and duration of applied stress.

Subject:
Applied Science
Engineering
Material Type:
Activity/Lab
Provider:
CUNY Academic Works
Provider Set:
LaGuardia Community College
Author:
Eze, Reginald
Date Added:
01/01/2015
Engineering Technology (Robotics) Model
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

***LOGIN REQUIRED*** Engineering Technology provides learning opportunities for students interested in preparing for careers in the design, production, and maintenance of mechanical, telecommunications, electrical, electronics, and electromechanical products and systems.

Subject:
Applied Science
Career and Technical Education
Electronic Technology
Engineering
Material Type:
Full Course
Lesson Plan
Provider:
Butte County Office of Education
Provider Set:
CTE Online
Date Added:
03/07/2019
Engineering and Perception
Read the Fine Print
Some Rights Reserved
Rating
0.0 stars

An introductory seminar to High School and Freshman-Level Undergraduates that describes how several Biomedical Engineering innovations have been motivated by our senses of sight, sound, smell, taste and touch.

Subject:
Applied Science
Engineering
Material Type:
Lecture
Provider:
CUNY Academic Works
Provider Set:
City College
Author:
Vazquez, Maribel
Date Added:
09/16/2016