This course will provide students with an understanding of the principles and …
This course will provide students with an understanding of the principles and concepts of genetics, including the principles of heredity, including gene transmission, mutation, recombination, and function. The course will also explore ethical issues related to the field of research genetics and the implications of the use of genetics in treating modern disease. This course is recommended for students who wish to pursue a degree in the biological sciences and/or professional school (i.e., medical school, pharmacy school).
Biology 2e is designed to cover the scope and sequence requirements of a …
Biology 2e is designed to cover the scope and sequence requirements of a typical two-semester biology course for science majors. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology includes rich features that engage students in scientific inquiry, highlight careers in the biological sciences, and offer everyday applications. The book also includes various types of practice and homework questions that help students understand—and apply—key concepts. The 2nd edition has been revised to incorporate clearer, more current, and more dynamic explanations, while maintaining the same organization as the first edition. Art and illustrations have been substantially improved, and the textbook features additional assessments and related resources.
By the end of this section, you will be able to do …
By the end of this section, you will be able to do the following:
Explain the relationship between genotypes and phenotypes in dominant and recessive gene systems Develop a Punnett square to calculate the expected proportions of genotypes and phenotypes in a monohybrid cross Explain the purpose and methods of a test cross Identify non-Mendelian inheritance patterns such as incomplete dominance, codominance, recessive lethals, multiple alleles, and sex linkage
By the end of this section, you will be able to do …
By the end of this section, you will be able to do the following:
Explain Mendel’s law of segregation and independent assortment in terms of genetics and the events of meiosis Use the forked-line method and the probability rules to calculate the probability of genotypes and phenotypes from multiple gene crosses Explain the effect of linkage and recombination on gamete genotypes Explain the phenotypic outcomes of epistatic effects between genes
By the end of this section, you will be able to do …
By the end of this section, you will be able to do the following:
Describe the scientific reasons for the success of Mendel’s experimental work Describe the expected outcomes of monohybrid crosses involving dominant and recessive alleles Apply the sum and product rules to calculate probabilities
Since the discovery of the structure of the DNA double helix in …
Since the discovery of the structure of the DNA double helix in 1953 by Watson and Crick, the information on detailed molecular structures of DNA and RNA, namely, the foundation of genetic material, has expanded rapidly. This discovery is the beginning of the "Big Bang" of molecular biology and biotechnology. In this seminar, students discuss, from a historical perspective and current developments, the importance of pursuing the detailed structural basis of genetic materials.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.